

Atharva Fulay - 1853414943
INF 551 Final Project
5/10/2020

Applying Decision Trees and Random Forests to Predict Poisonous Mushrooms

Abstract

Decision Trees and Random Forests are
used to classify data based on its
attributes. In this paper, I’ve outlined
how I created decision tree and random
forest models and compared their
respective results when used to predict
whether a mushroom is poisonous when
eaten or if it is safely edible. The models
use a training and test dataset to validate
the results. Both, the decision tree model
and the random forest model, are able to
accurately classify 100% of poisonous
mushrooms when there is no cap on the
max_depth. When there is a cap, though,
the random forest shows a slight
advantage.

Introduction

In INF 552, we were taught about
various machine learning methods including
Decision Trees. Leveraging decision trees to
make predictions or classifications is a
popular method of machine learning today.
However, decision trees are prone to
becoming overfit to the training data.
Pruning is a method that can be used to
avoid overfitting, but could be coming at the
cost of the overall prediction accuracy.
Another solution that computer scientists
found is using randomness to help mitigate
this issue. Thus, one popular machine
learning analysis that is built off the core of
Decision Tree classifier (DTC) and
leverages randomness is a Random Forest.
Through this randomness, the Random
Forest classifier (RFC) is less likely to suffer
from overfitting while often resulting in a
higher accuracy. The analysis in this paper

demonstrates the use of both classifiers, and
tests the advantages of random forests.

Data Exploration and Preparation

To apply random forests to a real
world example, I analyzed a set of over
8,000 mushrooms [Resource 1]. There are
4,208 records for edible mushrooms and
3,916 for poisonous. The attributes of this
dataset are ​['edible-poisonous',
'cap-shape', 'cap-surface',

'cap-color', 'bruises',

'odor', 'gill-attachment',

'gill-spacing', 'gill-size',

'gill-color', 'stalk-shape',

'stalk-root',

'stalk-surface-above-ring',

'stock-shape-below-ring',

'stalk-color-above-ring',

'stalk-color-below-ring',

'veil-type', 'veil-color',

'ring-number', 'ring-type',

'spore-print-color',

'population', 'habitat']

[Resource 2]. The objective is to determine
which mushrooms are poisonous and which
are safe to eat (​'edible-poisonous'​).

Initially, I explored the data and
noticed there are numerous values for each
attribute. Even though there are some
records where the ​'stalk root'​ is
unknown, I included that as a feature, and
factorized it as unknown. Finally, I
factorized the rest of the data points, since
all of the fields are texts which map to the
nature of their attribute.

Next, though any true application of
this dataset is out of left field, it is important
to determine the practical use of this data. In
this case, one possible situation would be if

one were camping and were bet by a friend
to eat a mushroom they encountered on a
trail. Assuming knowledge of this model,
one could determine if it is safe to eat or not.
Because of this situation, and for general
practice, I fed both models all fields and
factorized values except
'edible-poisonous'​ and had the
models predict it.

In order to run these models
efficiently, I used the sklearn library
[Resource 3][Resource 4][Resource 5].
Sklearn offers comprehensive support and
documentation for both DTC and RFC as
well as other methods used in the process.

The data is shuffled to disassociate
any possible patterns. In an effort to use as
much of the dataset as possible, I didn’t only
do the typical training and test data sets.
Rather, I include a K-Fold cross validation
as well. This was done not necessarily to
find the best parameters, but to see how well
each model does on this dataset. I used a k
of 10, which effectively splits up the data
into 10 sections and trains it with 9 of the
10, tests on one, and then rotates through all
10. This way, we are able to make use of all
the data points. Since this dataset was quite
rich, there is no major concern about
overfitting. The RFC and DTC are both run
with this data to generate the models.

Experiments and Results

Both classifier models are easily able
to classify 100% of the edible and poisonous
mushrooms. Typically both model types
needed 7-8 levels (depth) to achieve the
perfect mark. To make analysis more
interesting, I experimented with the
parameters of both model types ​before​ they
achieved the 100% score. Some of the
experiments in detail below are: using
entropy, max_depth, max_features, and
class weights.

Model comparisons
The RFC models are generated with

100 decision trees all using entropy as their
method of calculating which attributes to use
at each node. DTC is also using entropy as
the method of choosing the attribute. The
difference between using entropy and gini
were negligible.

Since the models were both returning
100% accuracies by depth 8, I began my
experiments by including the max_depth
parameter, which limits how deep the trees
can go. A good depth for comparisons
ranges between 3 and 5. This is where the
models are still able to produce accuracies
of over 90%, but are not 100%. By limiting
the depth of the tree, I am generalizing it for
a broader set of mushrooms. If this dataset
was more complex, then there could be
potential cases of overfitting, which is also
where this depth-limitation would have
helped the models from suffering from that.
This parameter is also present in the
following analyses to compare the two
model types.

Next, as a part of experimenting with
the data, I attempted to set the max_features
as well to compare the RFC to DTC. There
were two main considerations for
max_features: None or ‘sqrt’. Sqrt will take
the square root of the number of features and
use at most that many when constructing the
RFC and DTC, while None would tell the
classifiers to use all available features. For
some of my analyses, I intentionally used
‘sqrt’ for comparison purposes only because
None provided identical results.

The final aspect I experimented with
was class weights. To think about this
intuitively, it is much better to not eat an
edible mushroom than to eat a mushroom
thinking it is edible but it is really
poisonous. Thus, instead of weighing the
edible and poisonous with the same weight,
it makes more sense to highly value

knowing for sure which mushrooms are
poisonous. That way, one can be confident
about eating the mushroom and not being
poisoned. To account for this, I placed a
high weight of 100 on the poisonous label
and 1 on the edible label. This should ensure
that any errors made by both model types
would err on the side of caution. In other
words, the models would rather predict that
a mushroom is poisonous even if it isn’t than
predicting the mushroom is not poisonous
even if it is.

Figure 1. (above) Using a weight of 100 on poisonous, a
comparison between using all features and only the square

root number of features.

Figure 2. (below) With no special weight classes, all vs
square root number of features for RFC. For the most part,

using all features proves advantageous.

Figures 3 and 4 - Same setup as figures 1 and 2 except for
DTC. Using all the features for DTC proves advantageous

as well. Results are much more consistent than sqrt.

Figures 5 and 6 - Comparing RFC to DTC. Although the
DTC catches up quickly, it is more inconsistent in its

accuracy at lower max_depths than the RFC. Figure 6 (next
page) is the same as Figure 5, but now with no class

weights.

Figure 3 above.

Figure 4 above.

Figure 5 above.

Figure 6 above.

By visualizing the analyses through

Figures 1-6, one can see various differences
between the models. Firstly, when viewing
Figures 1 and 2 together and Figures 3 and 4
together (where the only difference is the
usage of class weights), None/all resulted in
higher test accuracies than ‘sqrt’ for the
most part. This makes sense since the model
can use all the available features instead of
only a limited selection. Though it may be
hard to tell, the blue lines in Figures 1 and 2
are almost the exact same values. Same for
the blue lines in Figures 3 and 4.

This brings up the second
observation: class weights seemed to give
the ‘sqrt’ models a hard time for both model
types. Using the weights was a way to
ensure that the models err on the side of
caution, but at lower depths that resulted in
erratic model behavior. Since there were a
limited number of features that could be
used, it made both models more inconsistent
when attempting to ensure no false
positives.

Next, it comes down to comparing
the DTC to RFC. One quick note, as I
mentioned above, I used ‘sqrt’ for
max_features only for comparison purposes.
When using None, both models provided
similar results (to the point where the
difference was not visible). Looking at
Figures 5 and 6, it is clear the RFC is more
consistent than DTC. The lines are much

smoother, and do not often bounce around in
terms of test accuracy. This partially shows
the advantage of random forests being more
sturdy and steady than a single decision tree.

Furthermore, when comparing these
models using the K-Fold cross validation,
the RFC fairly consistently beat out the DTC
in overall test accuracy (0.994 to 0.953).
This is, of course assuming the max_depth is
between 3 and 5. It seems that the RFC is
simply more consistent than the DTC.
Again, this makes intuitive sense since the
RFC is more robust and is able to work
better for generalization.

These analyses are not able to truly
test the DTC’s proneness to easily overfit
with this dataset. Because the features
provide rich discrete data, the DTC and RFC
didn’t need to go deep to produce accurate
results. However, one can see that the RFC
is more consistent in its results when paired
with the suboptimal parameters. Altogether
this displays the consistency and robustness
that random forests provide even though it
produces similar results to the decision tree
models.

However, it must be acknowledged
that the decision tree model performed well.
With optimal parameters, the decision tree
produced accuracies identical to those from
random forests. DTC’s shortcomings were
visible when under not the best conditions
(compared to RFC). But under the best
conditions, it still is able to produce great
results all while incurring significantly less
computation.

RFC and DTC Specifics

Focusing only on RFC, the most
important feature, by far, is odor. As you
can see in Figure 7 (next page), odor takes a
commanding 0.40 on average for importance
level. Next best was ring type, resulting in
about 0.07.

Figure 7 (above). This displays the feature importances for

the optimal RFC. Odor is the most important feature, by
far, having an average value of 0.40.

Figure 8 (below). The optimal DTC model looks something
like this. Obviously it may vary if you run it on your own
due to sampling of the dataset, however, it should look

fairly similar to this. Note, this is with the high class weight
on poisonous, which is why the tree is narrow.

Next, focusing only on the optimal
DTC, one can see the simplicity of the tree
in Figure 8. This model has the heavy
weight on poisonous, which is why the tree
is quite narrow compared to when the
weights are evenly balanced.

Since the optimal models are
producing 100% results, it is obvious what
the confusion matrix would look like.
However, when using suboptimal
conditions, both models error on false
negatives rather than false positives. Again,
this is intentional since it would be better to
not eat an edible mushroom than it would be
to eat a poisonous one.

Both model types are able to
accurately identify 100% of the poisonous
mushrooms, but have a few that are false
negatives.

Max-depth capped RFC:

Predicted edible poisonous

Actual

edible 4040 168

poisonous 0 3916

Max-depth capped DTC:

Predicted edible poisonous

Actual

edible 3845 363

poisonous 0 3916

Due to the fact that the data is

shuffled and then partitioned, there is a
small variance in the accuracies/optimal
result. When running my analyses, I chose
the best accuracy on a consistent basis.
Therefore, if you choose to run the code
yourself, there is a chance that the results

will not match exactly as these analyses
display. Though, the optimal choices and
visuals should have similar outputs.

Conclusion

All in all, both models are able to
accurately predict 100% of the poisonous
mushrooms with ease. In a real application,
if a model was to tell a user that eating a
particular mushroom could be deadly is
pretty fascinating. Though unlikely, it could
prove as insightful information when out in
nature.

Even though the random forest
model is thought to be advantageous over
the decision tree classifiers, decision trees
are still very useful and applicable to many
datasets. In this case, the decision tree’s
simplicity produced accuracies more or less
equivalent to the random forest model
despite RFC’s complexity and depth.
Though, the random forest models did
display more robustness when under
suboptimal conditions than decision trees
under the same parameters.

Citations

[Resource 1] Data was sourced from:
https://archive.ics.uci.edu/ml/datasets/Mushroom
Mushroom records drawn from The Audubon Society Field Guide to North American
Mushrooms (1981). G. H. Lincoff (Pres.), New York: Alfred A. Knopf

Repository: Dua, D. and Graff, C. (2019). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and
Computer Science.

[Resource 2] Full data mapping from the data source:​ (classes: edible=e, poisonous=p)
1. cap-shape bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s

2. cap-surface fibrous=f, grooves=g, scaly=y, smooth=s

3. cap-color

brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p, purple=u,

red=e, white=w, yellow=y

4. bruises? bruises=t, no=f

5. odor

almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n,

pungent=p, spicy=s

6. gill-attachment attached=a, descending=d, free=f, notched=n

7. gill-spacing close=c, crowded=w, distant=d

8. gill-size broad=b, narrow=n

9. gill-color

black=k, brown=n, buff=b, chocolate=h, gray=g, green=r,

orange=o, pink=p, purple=u, red=e, white=w, yellow=y

10. stalk-shape enlarging=e, tapering=t

11. stalk-root

bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z, rooted=r,

missing=?

12.

stalk-surface-above-ring fibrous=f, scaly=y, silky=k, smooth=s

13.

stalk-surface-below-ring fibrous=f, scaly=y, silky=k, smooth=s

14.

stalk-color-above-ring

brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e,

white=w, yellow=y

15.

stalk-color-below-ring

brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e,

white=w, yellow=y

16. veil-type partial=p, universal=u

17. veil-color brown=n, orange=o, white=w, yellow=y

18. ring-number none=n, one=o, two=t

19. ring-type

cobwebby=c, evanescent=e, flaring=f, large=l, none=n, pendant=p,

sheathing=s, zone=z

https://archive.ics.uci.edu/ml/datasets/Mushroom

20. spore-print-color

black=k, brown=n, buff=b, chocolate=h, green=r, orange=o,

purple=u, white=w, yellow=y

21. population

abundant=a, clustered=c, numerous=n, scattered=s, several=v,

solitary=y

22. habitat

grasses=g, leaves=l, meadows=m, paths=p, urban=u, waste=w,

woods=d

[Resource 3]
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

[Resource 4]
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

[Resource 5]
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

