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Abstract 

Decision Trees and Random Forests are 
used to classify data based on its 
attributes. In this paper, I’ve outlined 
how I created decision tree and random 
forest models and compared their 
respective results when used to predict 
whether a mushroom is poisonous when 
eaten or if it is safely edible. The models 
use a training and test dataset to validate 
the results. Both, the decision tree model 
and the random forest model, are able to 
accurately classify 100% of poisonous 
mushrooms when there is no cap on the 
max_depth. When there is a cap, though, 
the random forest shows a slight 
advantage. 

 
Introduction 

In INF 552, we were taught about 
various machine learning methods including 
Decision Trees. Leveraging decision trees to 
make predictions or classifications is a 
popular method of machine learning today. 
However, decision trees are prone to 
becoming overfit to the training data. 
Pruning is a method that can be used to 
avoid overfitting, but could be coming at the 
cost of the overall prediction accuracy. 
Another solution that computer scientists 
found is using randomness to help mitigate 
this issue. Thus, one popular machine 
learning analysis that is built off the core of 
Decision Tree classifier (DTC) and 
leverages randomness is a Random Forest. 
Through this randomness, the Random 
Forest classifier (RFC) is less likely to suffer 
from overfitting while often resulting in a 
higher accuracy. The analysis in this paper 

demonstrates the use of both classifiers, and 
tests the advantages of random forests.  
 
Data Exploration and Preparation 

To apply random forests to a real 
world example, I analyzed a set of over 
8,000 mushrooms [Resource 1]. There are 
4,208 records for edible mushrooms and 
3,916 for poisonous. The attributes of this 
dataset are ​['edible-poisonous', 
'cap-shape', 'cap-surface', 

'cap-color', 'bruises', 

'odor', 'gill-attachment', 

'gill-spacing', 'gill-size', 

'gill-color', 'stalk-shape', 

'stalk-root', 

'stalk-surface-above-ring', 

'stock-shape-below-ring', 

'stalk-color-above-ring', 

'stalk-color-below-ring', 

'veil-type', 'veil-color', 

'ring-number', 'ring-type', 

'spore-print-color', 

'population', 'habitat'] 

[Resource 2]. The objective is to determine 
which mushrooms are poisonous and which 
are safe to eat (​'edible-poisonous'​). 

Initially, I explored the data and 
noticed there are numerous values for each 
attribute. Even though there are some 
records where the ​'stalk root'​ is 
unknown, I included that as a feature, and 
factorized it as unknown. Finally, I 
factorized the rest of the data points, since 
all of the fields are texts which map to the 
nature of their attribute.  

Next, though any true application of 
this dataset is out of left field, it is important 
to determine the practical use of this data. In 
this case, one possible situation would be if 

 



 

one were camping and were bet by a friend 
to eat a mushroom they encountered on a 
trail. Assuming knowledge of this model, 
one could determine if it is safe to eat or not. 
Because of this situation, and for general 
practice, I fed both models all fields and 
factorized values except 
'edible-poisonous'​ and had the 
models predict it. 

In order to run these models 
efficiently, I used the sklearn library 
[Resource 3][Resource 4][Resource 5]. 
Sklearn offers comprehensive support and 
documentation for both DTC and RFC as 
well as other methods used in the process.  

The data is shuffled to disassociate 
any possible patterns. In an effort to use as 
much of the dataset as possible, I didn’t only 
do the typical training and test data sets. 
Rather, I include a K-Fold cross validation 
as well. This was done not necessarily to 
find the best parameters, but to see how well 
each model does on this dataset. I used a k 
of 10, which effectively splits up the data 
into 10 sections and trains it with 9 of the 
10, tests on one, and then rotates through all 
10. This way, we are able to make use of all 
the data points. Since this dataset was quite 
rich, there is no major concern about 
overfitting. The RFC and DTC are both run 
with this data to generate the models. 
 
Experiments and Results 

Both classifier models are easily able 
to classify 100% of the edible and poisonous 
mushrooms. Typically both model types 
needed 7-8 levels (depth) to achieve the 
perfect mark. To make analysis more 
interesting, I experimented with the 
parameters of both model types ​before​ they 
achieved the 100% score. Some of the 
experiments in detail below are: using 
entropy, max_depth, max_features, and 
class weights. 
 

Model comparisons 
The RFC models are generated with 

100 decision trees all using entropy as their 
method of calculating which attributes to use 
at each node. DTC is also using entropy as 
the method of choosing the attribute. The 
difference between using entropy and gini 
were negligible. 

Since the models were both returning 
100% accuracies by depth 8, I began my 
experiments by including the max_depth 
parameter, which limits how deep the trees 
can go. A good depth for comparisons 
ranges between 3 and 5. This is where the 
models are still able to produce accuracies 
of over 90%, but are not 100%. By limiting 
the depth of the tree, I am generalizing it for 
a broader set of mushrooms. If this dataset 
was more complex, then there could be 
potential cases of overfitting, which is also 
where this depth-limitation would have 
helped the models from suffering from that. 
This parameter is also present in the 
following analyses to compare the two 
model types. 

Next, as a part of experimenting with 
the data, I attempted to set the max_features 
as well to compare the RFC to DTC. There 
were two main considerations for 
max_features: None or ‘sqrt’. Sqrt will take 
the square root of the number of features and 
use at most that many when constructing the 
RFC and DTC, while None would tell the 
classifiers to use all available features. For 
some of my analyses, I intentionally used 
‘sqrt’ for comparison purposes only because 
None provided identical results. 

The final aspect I experimented with 
was class weights. To think about this 
intuitively, it is much better to not eat an 
edible mushroom than to eat a mushroom 
thinking it is edible but it is really 
poisonous. Thus, instead of weighing the 
edible and poisonous with the same weight, 
it makes more sense to highly value 

 



 

knowing for sure which mushrooms are 
poisonous. That way, one can be confident 
about eating the mushroom and not being 
poisoned. To account for this, I placed a 
high weight of 100 on the poisonous label 
and 1 on the edible label. This should ensure 
that any errors made by both model types 
would err on the side of caution. In other 
words, the models would rather predict that 
a mushroom is poisonous even if it isn’t than 
predicting the mushroom is not poisonous 
even if it is. 

Figure 1. (above) Using a weight of 100 on poisonous, a 
comparison between using all features and only the square 

root number of features.  
 

Figure 2. (below) With no special weight classes, all vs 
square root number of features for RFC. For the most part, 

using all features proves advantageous.  

 
 
 
 
 

Figures 3 and 4 - Same setup as figures 1 and 2 except for 
DTC. Using all the features for DTC proves advantageous 

as well. Results are much more consistent than sqrt.  
 

Figures 5 and 6 - Comparing RFC to DTC. Although the 
DTC catches up quickly, it is more inconsistent in its 

accuracy at lower max_depths than the RFC. Figure 6 (next 
page) is the same as Figure 5, but now with no class 

weights.  

Figure 3 above. 

 
Figure 4 above. 

 
 
 

Figure 5 above. 
 
 

 



 

 
Figure 6 above. 

 
By visualizing the analyses through 

Figures 1-6, one can see various differences 
between the models. Firstly, when viewing 
Figures 1 and 2 together and Figures 3 and 4 
together (where the only difference is the 
usage of class weights), None/all resulted in 
higher test accuracies than ‘sqrt’ for the 
most part. This makes sense since the model 
can use all the available features instead of 
only a limited selection. Though it may be 
hard to tell, the blue lines in Figures 1 and 2 
are almost the exact same values. Same for 
the blue lines in Figures 3 and 4. 

This brings up the second 
observation: class weights seemed to give 
the ‘sqrt’ models a hard time for both model 
types. Using the weights was a way to 
ensure that the models err on the side of 
caution, but at lower depths that resulted in 
erratic model behavior. Since there were a 
limited number of features that could be 
used, it made both models more inconsistent 
when attempting to ensure no false 
positives. 

Next, it comes down to comparing 
the DTC to RFC. One quick note, as I 
mentioned above, I used ‘sqrt’ for 
max_features only for comparison purposes. 
When using None, both models provided 
similar results (to the point where the 
difference was not visible). Looking at 
Figures 5 and 6, it is clear the RFC is more 
consistent than DTC. The lines are much 

smoother, and do not often bounce around in 
terms of test accuracy. This partially shows 
the advantage of random forests being more 
sturdy and steady than a single decision tree. 

Furthermore, when comparing these 
models using the K-Fold cross validation, 
the RFC fairly consistently beat out the DTC 
in overall test accuracy (0.994 to 0.953). 
This is, of course assuming the max_depth is 
between 3 and 5. It seems that the RFC is 
simply more consistent than the DTC. 
Again, this makes intuitive sense since the 
RFC is more robust and is able to work 
better for generalization.  

These analyses are not able to truly 
test the DTC’s proneness to easily overfit 
with this dataset. Because the features 
provide rich discrete data, the DTC and RFC 
didn’t need to go deep to produce accurate 
results. However, one can see that the RFC 
is more consistent in its results when paired 
with the suboptimal parameters. Altogether 
this displays the consistency and robustness 
that random forests provide even though it 
produces similar results to the decision tree 
models. 

However, it must be acknowledged 
that the decision tree model performed well. 
With optimal parameters, the decision tree 
produced accuracies identical to those from 
random forests. DTC’s shortcomings were 
visible when under not the best conditions 
(compared to RFC). But under the best 
conditions, it still is able to produce great 
results all while incurring significantly less 
computation.  
 
RFC and DTC Specifics 

Focusing only on RFC, the most 
important feature, by far, is odor. As you 
can see in Figure 7 (next page), odor takes a 
commanding 0.40 on average for importance 
level. Next best was ring type, resulting in 
about 0.07.  

 



 

 
Figure 7 (above). This displays the feature importances for 

the optimal RFC. Odor is the most important feature, by 
far, having an average value of 0.40.  

 
 

Figure 8 (below). The optimal DTC model looks something 
like this. Obviously it may vary if you run it on your own 
due to sampling of the dataset, however, it should look 

fairly similar to this. Note, this is with the high class weight 
on poisonous, which is why the tree is narrow.  

 
 

 
 
 
 

Next, focusing only on the optimal 
DTC, one can see the simplicity of the tree 
in Figure 8. This model has the heavy 
weight on poisonous, which is why the tree 
is quite narrow compared to when the 
weights are evenly balanced. 

Since the optimal models are 
producing 100% results, it is obvious what 
the confusion matrix would look like. 
However, when using suboptimal 
conditions, both models error on false 
negatives rather than false positives. Again, 
this is intentional since it would be better to 
not eat an edible mushroom than it would be 
to eat a poisonous one. 

Both model types are able to 
accurately identify 100% of the poisonous 
mushrooms, but have a few that are false 
negatives. 
 
Max-depth capped RFC: 

Predicted edible poisonous 

Actual   

edible 4040 168 

poisonous 0 3916 

 
Max-depth capped DTC: 

Predicted edible poisonous 

Actual   

edible 3845 363 

poisonous 0 3916 

 
Due to the fact that the data is 

shuffled and then partitioned, there is a 
small variance in the accuracies/optimal 
result. When running my analyses, I chose 
the best accuracy on a consistent basis. 
Therefore, if you choose to run the code 
yourself, there is a chance that the results 

 



 

will not match exactly as these analyses 
display. Though, the optimal choices and 
visuals should have similar outputs. 

 
Conclusion 

All in all, both models are able to 
accurately predict 100% of the poisonous 
mushrooms with ease. In a real application, 
if a model was to tell a user that eating a 
particular mushroom could be deadly is 
pretty fascinating. Though unlikely, it could 
prove as insightful information when out in 
nature. 

Even though the random forest 
model is thought to be advantageous over 
the decision tree classifiers, decision trees 
are still very useful and applicable to many 
datasets. In this case, the decision tree’s 
simplicity produced accuracies more or less 
equivalent to the random forest model 
despite RFC’s complexity and depth. 
Though, the random forest models did 
display more robustness when under 
suboptimal conditions than decision trees 
under the same parameters. 
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[Resource 2] Full data mapping from the data source:​ (classes: edible=e, poisonous=p) 
1. cap-shape bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s 

2. cap-surface fibrous=f, grooves=g, scaly=y, smooth=s 

3. cap-color 

brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p, purple=u, 

red=e, white=w, yellow=y 

4. bruises? bruises=t, no=f 

5. odor 

almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n, 

pungent=p, spicy=s 

6. gill-attachment attached=a, descending=d, free=f, notched=n 

7. gill-spacing close=c, crowded=w, distant=d 

8. gill-size broad=b, narrow=n 

9. gill-color 

black=k, brown=n, buff=b, chocolate=h, gray=g, green=r, 

orange=o, pink=p, purple=u, red=e, white=w, yellow=y 

10. stalk-shape enlarging=e, tapering=t 

11. stalk-root 

bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z, rooted=r, 

missing=? 

12. 

stalk-surface-above-ring fibrous=f, scaly=y, silky=k, smooth=s 

13. 

stalk-surface-below-ring fibrous=f, scaly=y, silky=k, smooth=s 

14. 

stalk-color-above-ring 

brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, 

white=w, yellow=y 

15. 

stalk-color-below-ring 

brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, 

white=w, yellow=y 

16. veil-type partial=p, universal=u 

17. veil-color brown=n, orange=o, white=w, yellow=y 

18. ring-number none=n, one=o, two=t 

19. ring-type 

cobwebby=c, evanescent=e, flaring=f, large=l, none=n, pendant=p, 

sheathing=s, zone=z 

 

https://archive.ics.uci.edu/ml/datasets/Mushroom


 

20. spore-print-color 

black=k, brown=n, buff=b, chocolate=h, green=r, orange=o, 

purple=u, white=w, yellow=y 

21. population 

abundant=a, clustered=c, numerous=n, scattered=s, several=v, 

solitary=y 

22. habitat 

grasses=g, leaves=l, meadows=m, paths=p, urban=u, waste=w, 

woods=d 

 
[Resource 3] 
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 
 
[Resource 4] 
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html 
 
[Resource 5] 
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html 
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https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

